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• Screening with dynamical quarks

• Nontrivial spectra of two dimensional gauge theories

• Lattice: partition function and its continuum limit

• Adding external charges:

Wilson loops and Polyakov lines

continuum limit

interpretation

theta states

screening and effective fractional charge

• Fractional charges on a lattice and the new/classical continuum limit

• Nonabelian case
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I. Screening with dynamical fermions
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Figure 1:
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II. Nontrivial spectra of trivial gauge theories

• Two dimensional gauge theories are trivial - no transverse degrees of

freedom.

• True only if we neglect boundary conditions.

Quantum Maxwell Dynamics in 1+1 dimensions (QMD2) on a circle

En =
e2

2
Ln2, n = 0,±1,±2, ... [Manton,′ 84]

An effective 1DOF hamiltonian

H = − e
2

2L

d2

dA2
, 0 ≤ A < LA =

2π

L
(1)

The spectrum

ψn(A) = einAL = eipnA, pn = n
2π

LA
= nL, En =

e2

2
Ln2 (2)

What is A ?

Ax(x, t) = A(x, t),
∂xA(x,t)=0−→ A(x, t) = A(t) 6= 0
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In a periodic (in x) world one cannot set a constant A to 0 by a gauge transformation
– 1 DOF left

Why periodicity in A ?

If space is periodic, gauge transformations also have to be periodic (up to 2πn)

g(x) = eiΛ(x) = g(x + L), −→ Λ(x + L) = Λ(x) + 2πn

Take Λ(x) = 2π x
L, then

A −→ A + ∂xΛ(x) = A +
2π

L
, are gauge equivalent =⇒ A ∈ (0,

2π

L
]

Interpretation

• a string with n units of electric flux winding around a circle

• Gauss’s law satisfied thanks to the nontrivial topology - topological

strings

• electric charge even without electrons/sources !
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A generalization: Θ parameter

a)

H = − e
2

2L

 d

dA
+ iΘL

2

,

En =
e2

2
L(n + Θ)2, ψn(A) = einAL

b)

H̃ = − e
2

2L

d2

dA2
,

En =
e2

2
L(n + Θ)2, ψ̃n(A) = ei(n+Θ)AL,

ψ̃n(A) = eiΘALψn(A)

Interpretation: eΘ – classic, constant electric field
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II. QMD2 on a lattice

Figure 2:

Partition function on a 2x2 lattice

Z =
∫ 2π

0
B(θ12 + ϑ22 − θ11 − ϑ12)B(θ22 + ϑ12 − θ21 − v22)

B(θ11 + ϑ21 − θ12 − ϑ11)B(θ21 + ϑ11 − θ22 − ϑ21)

d(links)

B(φP ) = eβ cos(φP ), d(links) = Πl
dαl
2π

A character expansion (Fourier analysis on a group)

B(φ) = Σ∞n=−∞In(β) exp (inφ),

The partition function ”almost” factorizes

Z = ΣnIn(β)4 −→ ΣnIn(β)NV , NV = Nt ∗Nx.
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The continuum limit

Z = # Σn

In(β)

I0(β)


Nx∗Nt

,

aNt = T, aNx = L, β =
1

e2a2
, a→ 0.

Asymptotic expansion of modified Bessel function

In(β)→ eβ√
2πβ

1− 4n2 − 1

8β
+ ...



gives

ZLQMD2 → # Σn

1− e2

2
n2a2


NxNt

= Σne
−EnT , En =

1

2
e2n2L,

−→Manton fluxes result in the continuum limit of lattice QMD2
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Emergence of a constant mode - Coulomb gauge on a lattice

A single row of Nx = 3 horizontal links θ1, θ2, θ3

A local gauge transformation specified by α1, α2, α3

θ1 → gθ1 = θ1 + α1 − α2

θ2 → gθ2 = θ2 + α2 − α3

θ3 → gθ3 = θ3 + α3 − α1

or

gθi = θi + βi, Σ3
i=1βi = 0

If we choose

β1 =
1

3
(θ1 + θ2 + θ3)− θ1

β2 =
1

3
(θ1 + θ2 + θ3)− θ2

β3 =
1

3
(θ1 + θ2 + θ3)− θ3
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then all new link angles are equal

gθ1 =g θ2 =g θ3 =
1

3
(θ1 + θ2 + θ3) ≡ θrow.

=⇒Only one degree of freedom remains

• Volume reduction

III. Adding external charges

Wilson loops

Figure 3:
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W [Γ] = Πl∈Γe
iθl (3)

Z〈W 〉 = ΣnIn(β)Nx∗Nt−nx∗ntIn+1(β)nx∗nt. (4)

Time like Polyakov loops

Z < P †(1)P (1 + nx) >= ΣnIn(β)Nt∗(Nx−nx)In+1(β)Nt∗nx, (5)

Continuum limit

aNt = T, aNx = L, β =
1

e2a2
, a→ 0.

Z < P (0)†P (R) >= Σne
−EPP

n T , (6)

with

EPP
n =

e2

2

(
n2(L−R) + (n + 1)2R

)
, n = 0,±1,±2, .... (7)
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A straightforward interpretation:

EPP
n =

e2

2

(
n2(L−R) + (n + 1)2R

)
, n = 0,±1,±2, .... (8)

• Time like Polyakov lines modify Gauss’s low at spatial points 0 and R - they introduce

external unit charges at these positions.

• Such charges cause additional unit of flux extending over distance R.

• Hence the two contributions to the eigenenergies: an ”old” flux over the distance L−R
and the new one, bigger by one unit (fluxes are additive !) , over R.

• Interesting special cases:

→ at large T the lowest, n = 0 and n = −1, states dominate. Then we just have

standard (unit flux) strings of length R and L-R ,

→ R = 0 – old topological flux with charge n.

→ R = L – when external charges meet at the ”end point” of a circle, they annihilate

(e+δP (0)+e−δP (L) = 0 )and leave behind a topological string with length L and charge

bigger by one unit.

• Varying R interpolates between integer valued topological fluxes.
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Equivalent form

EPP
n =

e2

2
L(n + ρ)2 + const.(L,R), ρ =

R

L
, const. =

e2

2
Lρ(1− ρ) (9)

• Indeed eRL is the electric field, generated by two sources, averaged over the whole

volume.

• The system does not see any distances, Ax(x) = const., hence averaging over the

volume.

• Changing R allows to mimic arbitrary real charge q = e(n + ρ).

• Only [ρ] is relevant.

13



• Θ parameter acquires now a straightforward interpretation

ΘManton = ρ =
R

L
,

• A new constant term.
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Θ-vacua

• The transformation A −→ A+ 2π
L is a large gauge transformation, Λ(x) = 2πx

L , Λ(x+

L) = Λ(x) + 2π

• Full analogy 4D YM and/or the crystal : many classical configurations around which

we can quantize

• Θ vacua: |Θ〉 = Σme
iΘm|m〉

• The wave function of a Θ-state ψΘ(x) = 〈x|Θ〉 satisfies ψΘ(x− d) = eiΘψΘ(x)

• The solution ( Bloch theorem) : ψΘ(x) = eiΘx/duΘ(x), with periodic uΘ(x)

• Our case: ψn(A) = ei(n+ρ)AL = eiρALeinAL is exactly of Bloch type upon identification

x→ A, d→ 2π/L , Θ→ 2πρ

• Introducing external charges fixes the Θ-vacuum in QMD2.

• D=4 : in a Θ-vacuum some field configurations acquire electric charge [Witten ’76].
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More, different charges

R2 - distance between doubly charged sources
R1 - distance between singly charged ones

Z < P (i)†P (j)2†P 2(j + n2)P (i + n1) >=

ΣnIn(β)Nt(Nx−n1)In+1(β)Nt(n1−n2)In+3(β)Ntn2,

• eigenenergies in the continuum limit

EPPPP
n =

e2

2

(
n2(L−R1) + (n + 1)2(R1 −R2) + (n + 3)2R2

)

=
e2

2
L

(
(n + ρ1 + 2ρ2)2 + ρ1(1− ρ1) + 4ρ2(2− ρ1 − ρ2)

)

etc. 1 DOF quantum mechanical systems can be also readily constructed.

• This time Θ = (R1 + 2R2)/L, i.e. it is again equal to the external field
averaged over the whole volume.
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IV. Arbitrary charges on a lattice

Why? To learn about screening

Massive Schwinger model

σq = m e
1− cos

2π
q

e

 m/e << 1, [Coleman et al., ′75]

⇒ generalizations for large N QCD2.

⇒ How to put arbitrary (noncongruent with e) charges on a lattice?

• One way: as above q = e(n + R/L)

• Another way: new observables
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Wilson loops with arbitrary charge

Z〈WQ〉 =
∫

(W [Γ])Q e−S, Q = q/e

Contras:
gauge invariance – not if you carefully/consistently deal
with multivaluedness
dependence on the boundaries in angular variables – not if you do
loops

Pros:
Results are consistent (MC ↔ TH)
New structure appears QMD2

Why not !
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Q-loops theoretically

Z〈WQ〉 = Σm,nI
NxNt−nxnt
n Inxntm S(Q−m + n)nx+nt,

S(x) =
sin πx

πx


2
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and ”experimentally” [P. Korcyl, M. Koren]

Figure 4:

• Q-loops can be defined on a lattice - MC agrees with TH

• They do not create states with arbitrary charge
– they excite the only existing quantum states with integer charges
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Continuum limit

Z〈WQ〉 −→ Σm,n exp

−e
2

2
n2L(T − t)

 exp

−e
2

2

(
n2(L−R) + m2R

)
t



S(Q− (n−m))(t+R)/a

does not exist at fixed, not integer Q.

=⇒ However the classical limit:
Q→∞, with q = Qe−fixed, on a fixed lattice (a,N ′s, const.)

does exist!
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Then β ≡ b2 = 1/e2a2 →∞, but not because a→ 0,
but because e→ 0.
The spectrum of fluxes becomes continuous: n→ u = n/b,m→ v = n/b

Therefore (Q = q/e =
√
β/κ = b/g, g = 1/qa)

ZKΠQQ = β
∫
dudv exp

−1

2
(u2(Nx − nx) + v2nx)


S

(
b(g−1 − (u− v))

)2
eibu(ΘL−R−Θ′L−R)eibv(ΘR−Θ′R)

using

S(b∆) b→∞−→ 1

b
δ(∆)

gives

ZKΠQQ =
√
β

∫
du exp

−1

2
(u2(Nx − nx) + (u− g−1)2nx)



eibu(ΘL−R−Θ′L−R)eib(u−g
−1)(ΘR−Θ′R)
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Now, do the gaussian integral, take the continuum limit to obtain

ZKΠQQ =
√
β

√√√√√√2πa

L
exp

−L
2

(A− A′)2

a

 exp

−q
2

2
ρ(1− ρ)La


=⇒ a free particle propagating over a time a, but in a constant background
potential

V =
q2

2
ρ(1− ρ)L

with arbitrary, real value of a classical charge q.

• The classical energy with a continuous charge q results from the contri-
bution of many microscopic states with discrete charges.

• the structure (zeroes of the string tension)

23



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1  10  100  1000

〈P
Q

(0
)P

Q
(n

)〉

β

n = 1
n = 2
n = 3
n = 4

24



V. Charge quantization

The connection between universality of a charge and compactness of a gauge
group is general.

Also valid in our world (i.e. 3+1 QED) .

The same charge of e, µ, p, ... ←→ U(1) gauge transformations are compact.

C. N. Yang, PRD 1 (1970) 2360.
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V. Nonabelian case: YM2 on a circle

• Continuum: problem reduces to N constant in space, but constrained,
angles θi, Σiθi = 0.

Hamiltnian is again quadratic and the spectrum is known explicitly [Het-
rick and Hosotani ’89]

E{n} =
g2L

4

Σin
2
i −

1

N
(Σini)

2
 , i = 1, ..., N − 1

• Continuum: different spectrum was obtained by Rajeev: ER = g2L
2 C2(R)

• Discrepancy comes from the Casimir energy due to the curvature of the
group manifold [Hetrick ’93, Witten ’91,’92]
• External charges in YM2 – studied by many [Semenoff et al. ’97] but
above interpretation in terms of screening was not.
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